Trajectory Indexing And Retrieval

--- An overview

Yi Zhao

Data Mining Lab UESTC xiaoFine@gmail.com

Preliminary

Trajectory Data Management

- Massive trajectories
- Travelling history of moving objects

Preliminary

- Trajectory Query
 - TP: trajectories and points

e.g. the trajectories within 500m of a JGM between 8:00am-9:30am

- TR: trajectories and ranges
 e.g. the region which is passed by *τ* trajectories between 9:00pm-9:30pm
- TT: trajectories and trajectories

e.g. the travelers who may take a similar path in the coming 30mins

Problems

A very large database
Continuous long-time query windows
Similarity of trajectories

R-tree

- MBBs (Minimum Bounding Box/Blocks)
- Efficient and simple
- Widely recognized in the spatial database

R-tree: query

- **Query Region**
- Query Nearest Neighbors: depth-first / best-first

R-tree: query

- Query Region
- Query Nearest Neighbors: depth-first / best-first

The distance is maintained between MBBs and the point

Best-first:

1. Beginning from the root

2. Matching the nearest MBB in each node

Depth-first:

1.Begining from a leaf node

2. A threshold is maintained

R-tree: drawbacks

• MBBs of R-tree nodes overlapping and multiple searching paths

R-tree

R-tree with augmentation in temporary dimensions

- 3D R-tree
 - Timestamp queries and interval queries
 - 3D-MBB bounding line segments
 - Drawbacks: MORE frequent overlapping duo to points update

R-tree with augmentation in temporary dimensions

- 3D R-tree
 - Timestamp queries and interval queries
 - 3D-MBB bounding line segments
 - Drawbacks: MORE frequent overlapping duo to points update

Time slot + Spatial index

- Dividing a time period into multiple time intervals
- Building an individual spatial index for the trajectories generated in each interval
- The stable part is shared by two time slots

Time slot + Spatial index: HR-tree

HR-tree

HR+-Tree: objects a smaller change of position may still be in the same nodes shared with different R-trees

Spatial grid + Temporal index

- Partitioning a geographical space into grids
- Builds a temporal index for the trajectories falling in each grid

CSE-tree

Spatial grid + Temporal index: CSE-tree

- A track is partitioned into segments by spatial grids
- Each segment is inserted into corresponding temporal
- Each segment represented by a 2D point whose coordinates are the starting time and ending time of the segment

Indexing by road networks

- Regarding a path on a road network as a trajectory
- Or converting a trajectory by mapmatching

Indexing by road network: suffix-tree-based

Thank You !

Yi Zhao

Data Mining Lab UESTC xiaoFine@gmail.com

R-tree

Insertion

B-tree

A binary search tree
Self-balancing
Keeping data sorted
Logarithmic time

CSE-tree

Structure

- Partition the points into groups by Te
- Build a start time index (B+ Tree) to index points of each group

Build a end time index (B+ Tree) to index groups

